If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=351
We move all terms to the left:
x^2+x-(351)=0
a = 1; b = 1; c = -351;
Δ = b2-4ac
Δ = 12-4·1·(-351)
Δ = 1405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1405}}{2*1}=\frac{-1-\sqrt{1405}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1405}}{2*1}=\frac{-1+\sqrt{1405}}{2} $
| x/5-8=0 | | -3=(4x+6)-x | | (2x-1)=(5x+11) | | 7x8+2=22 | | -9x+3/6=11 | | 63x-35=0 | | 3(2x-7)+4=14 | | 6x+3(-x=11)=3 | | 1.117x^2+128x+35=0 | | 2xª+3x=13 | | 2n+194=10n-6 | | 4n+8=-90-10n | | 63-2n=13-7n | | 2n+11=-21-6n | | 10+7n=4+n | | 4n-3=11n-80 | | 4n+37=13n-62 | | -7-4u-u=-1 | | 15x+2x+5+2x+5=180 | | y=2/3(-2)-4 | | 6x^2+31+5=0 | | 6x+1+4x-11=90 | | 6(n-1)+2(n=1) | | 4x+1=-3x+22 | | -5=x-(-28 | | (5x-11)+(2x+20)+(180-(11x-63))=180 | | x^2=2x=2 | | -7x=10+-2× | | x^2+4x+1=81 | | -7x=10+(-2×) | | 8q-15=-3 | | 5=0.1x*(10-x) |